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Abstract—Long-term planning in electric power systems re-
quires simulations of unit commitment (UC) and economic
dispatch (ED) for long time periods up to 20 years. Such
simulations are conducted with production cost models (PCMs),
which involve solving large-scale mixed-integer programming
(MIP) problems with a high number of variables and constraints,
because of the long planning horizon. We have developed new
optimization modeling and solution techniques based on a de-
composition scheme to reduce the solution time and improve
the accuracy in PCMs. We propose a temporal decomposition
method that solves the UC problem by systematically decoupling
the long-horizon MIP problem into several subhorizon models.
The decomposition is obtained by the Lagrangian relaxation of
the time-coupling UC constraints such as ramping constraints
and minimum uptime/downtime constraints. The key challenge
with this decomposition approach is to solve several sub-MIP
problems while effectively searching for dual variables in order
to accelerate the convergence of the algorithm. We implement the
temporal decomposition in the parallel decomposition framework
DSP, which can solve the multiple subproblems in parallel on
high-performance computing clusters. We also implement the
branch-and-bound method on top of the decomposition in order
to recover primal feasible solutions and find a primal optimal
solution. Numerical results of the decomposition method are
reported for the IEEE 118-bus system with up to an 168-hour
time horizon.

Index Terms—Production cost model, mixed-integer program-
ming, decomposition method, parallel computing

NOMENCLATURE

Sets:

g Generators

G Generators at bus n

K Generation cost blocks

L Transmission lines

Lr Transmission lines to bus n

L, Transmission lines from bus n

N Buses

T Time periods, = {1, ..., T}, where T is the number
of periods.

Parameters:

B Susceptance of transmission line [

Cyk Generation cost of generator g for generation cost
block k
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Demand load of bus n at time ¢
Minimum downtime of generator g
F Power capacity of transmission line [

Prr® Maximum power generation of generator g

P Minimum power generation of generator g

R;r Ramp-up capacity of generator g

Ry Ramp-down capacity of generator g

Sy Startup cost of generator g

K, Commitment cost of generator g

UT, Minimum uptime of generator g

~T Spinning-up reserve requirement

v Spinning-down reserve requirement

©min  Minimum phase-angle of bus n

Oe*  Maximum phase-angle of bus n

Variables:

fit Power flow in transmission line [ at time ¢

Dgt Power generation from generator g at time ¢

Sgkt Power generation from generator g at price block
k at time ¢

r;rt Reserve-up generation of generator g at time ¢

Tt Reserve-down generation of generator g at time ¢

Ugt Commitment of generator g at time ¢

Vgt Startup of generator g at time ¢

Ot Phase-angle of bus n at time ¢

I. INTRODUCTION

Production cost models (PCMs) are a class of computational
tools that simulate power system operations over an extended
(multimonth or multiyear) time horizon. The models leverage
optimization techniques to compute unit commitment (UC)
and economic dispatch (ED) schedules for a power system.
PCMs are the dominant approach to performing cost-benefit
analyses in the electricity grid industry. System operators,
utilities, generation companies, regulators, and policy ana-
lysts use PCMs for long-term planning purposes, analyzing
the impacts of potential future configurations of the power
system. For instance, PCMs are frequently used in renewable
integration studies (e.g. [1]). However, as the power system
evolves in terms of scale (e.g., the growing size of indepen-
dent system operators) and structure (e.g., rapidly increasing
renewables penetration rates [2], the introduction of smart grid
technologies [3]), current PCMs are not adequately addressing
the requirements with respect to the future power grid. For
example, model resolution is currently sacrificed in order
to obtain tractable run times, and the uncertainty associated



with renewables production is largely ignored. Consequently,
PCMs increasingly do not reflect the evolving grid reality
and consequently impact the accuracy of cost-benefit analyses
that decision makers use to guide investment, regulations, and
policy in the electric power industry.

The major challenge that hinders high-fidelity, multiscenario
PCM simulation is computational tractability. In a realistic
PCM simulation performed by system operators, the system
may consist of several hundreds to thousands of buses and
hundreds of generators. The PCM simulations could extend
the individual UC optimization problem for multiple weeks.
For a real system with a multiyear simulation period, weekly
optimization horizon for the underlying UC problems, and
hourly time resolution, the computational time is often imprac-
tical, especially when multiple scenarios are to be evaluated.
A number of researchers have proposed approaches to reduce
the computational burden, such as time-domain partitioning
[4], and various decomposition and inexact approximations
(e.g., [SIH7D.

In essence, most PCMs today end up solving a number
of deterministic multiday/week UC optimization problems in
sequence, and this is where most of the computational effort
is required. The UC problem is a fundamental part of power
system planning and operation and is also a notoriously hard
problem to solve from an optimization perspective, given
the binary decision variables and intertemporal constraints
involved. An extensive body of research has gone into im-
proved solutions for the deterministic UC problem [8]. More
recently, triggered by the influx of renewable energy, stochastic
UC formulations have also received extensive attention in the
research domain [9].

To increase the computational performance and accuracy
of PCM simulations, we focus on solving the deterministic
UC problem more efficiently by decomposing it into smaller
time periods. The method, called temporal decomposition,
is obtained by the Lagrangian relaxation of time-coupling
constraints such as ramping capacities and minimum up/down
time limits in the long-term UC problem. The key challenge
with this decomposition approach is to solve several mixed-
integer programming (MIP) problems while effectively search-
ing for dual variables in order to accelerate the convergence
of the algorithm. We develop a branch-and-bound method
based on temporal decomposition that can solve multiple sub-
problems in parallel on high-performance computing (HPC)
clusters. The method guarantees an optimal solution for the
long-term UC problem.

The Lagrangian relaxation was first applied in [10] and has
been an effective approach to unit commitment problems in
different forms for more than two decades (e.g., [0], [I1],
[12]). In particular, a Lagrangian relaxation, similar to our
temporal decomposition, has been applied in [0], where a
long-term UC problem is decomposed into shorter-term UC
problems by relaxing the time-coupling constraints for fuel
and emission limits. However, the other coupling constraints,
such as the ramping and minimum up/down time constraints,
were ignored. Consequently, the decomposition approach in
[6] provides only suboptimal solutions with unknown gaps.

A key task for an efficient Lagrangian relaxation method is

finding good Lagrangian multipliers. Different methods have
been developed for solving Lagrangian dual problems (e.g.,
[13]). We use a proximal bundle method in order to find the
best Lagrangian dual bound. The proximal bundle method
is a variant of the bundle method that outer-approximates
the Lagrangian dual function by adding a set of linearly
inequalities, with a proximal term in the objective function.
Each iteration of the proximal bundle method either finds
new dual multipliers for the subproblems or certifies the best
Lagrangian dual bound.

However, such a Lagrangian relaxation method, also called
dual decomposition, suffers from the lack of primal solution
characterization and the inability to recover primal feasible
solutions. To overcome issues, we additionally solve the dual
of the Lagrangian dual problem for given linear inequalities
generated from the dual decomposition. Note that this can be
seen as Dantzig-Wolfe decomposition with column generation
[14]. This provides the primal characterization of solutions
that can be used to guarantee integer feasibility by a branching
procedure in the branch-and-bound method.

The contributions of this paper are summarized as follows.

1) Developing a novel parallel temporal decomposition
based on the Lagrangian relaxation of the time-coupling
constraints in the UC problem.

2) Implementing the parallel temporal decomposition in an
open-source software package DSP, which can run on
either a desktop computer or HPC cluster.

3) Providing computational results that show significant
reductions in solution time — at least by a factor of
12.

We note that the proposed decomposition scheme has potential
applications in market and system operations, not only in PCM
planning studies.

The rest of the paper is organized as follows. In Section II
we present a MIP formulation for the UC problem considered
in this paper. Section III presents the temporal decomposition
that decouples the UC problem into shorter-time subproblems.
We also present the dual and Dantzig-Wolfe decompositions of
the problem, followed by the branch-and-price method based
on the decomposition schemes. In Section IV we show com-
putational results from the temporal decomposition for solving
the long-term UC problem on the IEEE 118-bus system. The
conclusions of this paper are discussed in Section V.

II. UNIT COMMITMENT MODEL FOR PRODUCTION COST
MODEL

In this section we present a UC model formulation that is
solved in a PCM simulation for an extended time horizon. The
UC model is formulated as a MIP problem,

min Z Z (Kgugt + Sgvge + Z Cgksgkt> (1a)
geGteT ke
s.t. Z fue — Z fu + Zpgt:Dnta neN,teT,
leLt leL;, 9€Gn
(1b)
Jit =Bi(Opt —Ome), l=(m,n)e L, teT, (Ic)
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Sordi =049 D, teT, (1h)
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Dorp<(l=77)) Du, teT, (1)
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>
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wgqg]-_ugtv gEQ, tGT, (lm)

Vgt — Wgt = Ugt — Ugt—1, § EG, t > 2, (In)
-F<fu<F,leLl teT, (lo)
O < 0, <O neN,teT, (1p)
Ugt, Vgt, Wg € {0,1}, g€ G, t € T. (1q)

The objective function (la) of the problem is to minimize
the sum of the commitment cost, the startup cost, and the
generation cost. Constraint (1b) ensures the flow balance for
each bus n € N and time ¢ € 7. Constraint (Ic) represents
a linearized power flow equation based on Kirchhoff’s law,
modeling electricity transmission. Constraint (1d) splits power
generation into price blocks k € K. Relations between reserve
up/down and power generation are described by constraints
(le) — (1g); constraints (1f) and (1g) also represent on/off of
each generator g at time ¢ with specified generation capaci-
ties. Constraints (1h) and (1i) represent the spinning reserve
requirements as a fraction of the total system load for each
time period ¢. Constraints (11) and (1m) ensure the minimum
up- and downtime, respectively, for each generator. Equation
(In) describes the logic between commitment, startup, and
shutdown decisions. Equations (lo) and (1p) are the bound
constraints for transmission line capacity and phase angle,
respectively. Commitment, startup, and shutdown decision
values are restricted to binaries by (lq). Note that more
constraints can be added to the model (1), such as fuel and
emission limits [6].

In practice, a PCM simulation solves a set of UC models
(1) in a rolling horizon basis with an overlapping period.
Constraints (1j) — (1n) couple multiple time periods. Each time
window of the rolling horizon sets simulation start conditions
(e.g., generator status, generation, and reserve amount) for the
coupling constraints. The length of the time window is chosen
for the actual UC operations (e.g., 24- or 48-hour periods) with
the overlap periods ranging from 0 to 5 days at the beginning
of the horizon [4], resulting in up to 168-hour time periods for
each time window. In particular, time windows with a longer

overlap provide more accurate simulation solutions for PCM

[4].

III. TEMPORAL DECOMPOSITION OF UC PROBLEM

While solving a longer-term UC problem (1) is important
for accurate PCM simulation, solving a sequence of UC prob-
lems poses a significant computational challenge in PCM sim-
ulation. We present a decomposition approach that accelerates
the UC solution time by decoupling problem (1) into a number
of subproblems with smaller time horizons. The decomposition
can be obtained by relaxing the coupling constraints (1j) —
(In). We also highlight that our decomposition approach is
different from the time domain decomposition [4], since our
approach is an alternative to solving the UC problem by any
generic MIP solver. We first define the set of subhorizon
indices J,

) T,CTforjed,

2) UjegT; =T, and

3) NT;=0fori+#jeJ,
where 7; is a subset of time horizon such that the indices
for time periods are consecutive. Using the set 7, we rewrite
the problem (1) to the following equivalent form with a set
of coupling constraints and the others. We also define vectors
u;,v;, Wj,P;,rj, and s;, where the elements are respectively
Ugt, Ugt, Wyt, Pgt, Tgt> and sq¢ for g € G, t € T;.

min Z Z Z <Kgugt + Sqvgt + Z Cgksgkt> (2a)

JET geG tET; keK
+ +
s.t. Tgt — Pg,t—1 S Rg Ug,t—1 + P;naz’l}gt,

geG, teT;,, t—1¢T;,jeJ, (2b)
Tor = Pgi—1 = —Ryug 1 — Py vy,
geG, teT;,, t—1¢T;, jeJ, (2¢)
t
Z Vgq < Ugt,
g=max{1,t—UTy+1}
g€G, teT;, t-Uly+1¢7T;,j€J, (2d
t
Z Woq <1 —ug,
g=max{1,t—DT,+1}
ge€G, teT;,, t—DT,+1¢7T;,j€T, Qe
Vgt — Wgt = Ugt — Ug,t—1,
geG, teT;, t—1¢7T,,j€J, (20)
(05,5, Wj,pj,1;,85) € Xj, j € J. (2g)

Here constraints (2b)—(2f) couple two consecutive subhori-
zons, and X; is the set of feasible solutions defined by all
the noncoupling constraints for subhorizon j; that is,

Zflt_ Zflt"’ ZpthDnunEN,tETj,

leLt ey 9€Gn
fit =Bi (0pt —Ome), L= (m,n) € L, t €T,
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Before deriving the decomposition framework, we fur-
ther simplify the formulation of problem (2). We define
the decision variable vectors x; such that x; concatenate
(we, v, Wy, D, 7, 8¢) for t € T;. In particular, x; represents
the decision variables for subhorizon j. Problem (2) can be

written as
Z ;= min Z C;jX; (3a)
jeT
st. Y Ajx;>b, (3b)
JjeT
x; € X, jed, (3¢)

where the objective coefficient vectors c; are defined to
represent (2a), and constraint (3b) represents constraints (2b)—
(2f) that couple the subhorizons.

A. Lower Bounding from Dual Decomposition

We present the Lagrangian dual of problem (3) resulting
from the Lagrangian relaxation of constraint (3b). We define
the Lagrangian dual function as

L(A) :=bX+ > D;(N),
JjeT

“)

where A is the dual variable corresponding to constraint (3b)
and D; () is defined as

i) xj-ecrtr)lrllg(xj) (c; i) %; ®)
The Lagrangian dual bound is obtained by solving
ZLD ‘= Iilg())([,()\). (6)

Note that z > zr.p > z1p, where 2y, p is the optimal objective
value of the linear relaxation of problem (3). Problem (6) can
be solved by a number of algorithms, such as the subgradient
method and bundle method (see [15] and references therein).

We use a proximal bundle method (e.g., [16]) that outer-
approximates the Lagrangian dual function £(\) by adding
linear inequalities with a regularization term of /y-norm in
the objective function. A set of linear inequalities is added at
each iteration. After adding « sets of linear inequalities, the
dual master problem (DMP) of the proximal bundle method
is given by

1 .

max jezjujer)\JrEH)\f)\H% (72)
sty < Dj(AF) + (Ax)T (A= AF),

jed k=1,... K, (7b)

A0, (7¢)

where 7 is a positive constant and A is the proximal center.
Constraints (7b) are the linear inequalities that construct the
outer-approximation of L£(A).

Algorithm 1 Dual Decomposition

Require: Initialize c;, A;, X;,b, 7 > 0,5\ >0, and € > 0.
Set Al <~ A,k 1, and 215 + —o0.
1: loop
2:  Solve (5) for given \* and for each j € J.
3: Stop if E(/\K) — 2z <€
4 Update the best bound zr, 5, the proximal center 5\, and
weight 7.
5. Find an optimal solution (A\**1, ,u?“) of (7).
6: Set k< x4+ 1.
7: end loop
8: return z;p and xf forjeJandk=1,..., k.

We summarize the algorithmic steps of the proximal bundle
method in Algorithm 1. The algorithm is initialized with
problem data and parameters. Solving subproblems (5) at line
2 finds a new dual bound and generates linear inequalities (7b)
for given A\"*. To update zy g, 5\, and 7 at line 4, we follow Al-
gorithm 2.1 and Procedure 2.2 in [16]. We solve the DMP (7)
by adding the linear inequalities with the proximal parameters
X and 7. We repeat the steps 2 — 6 until the stopping criterion
in line 3 is satisfied. Note that z;,p > L(AF) > L(\*~1) for
k = 2,...,k. The convergence of the algorithm depends on
step 4 and is proved in [16].

B. Dantzig-Wolfe Decomposition

While effectively finding a tight dual bound z;p of z,
the dual decomposition does not find a primal bound of the
problem (i.e., a primal feasible solution). In production cost
modeling, finding a primal optimal solution is necessary for
analyzing the electric grid system. Dantzig-Wolfe decompo-
sition is a primal-dual pair of the dual decomposition, which
constructs an innerestimate of the convex hull of X; (denoted
by conv(X;)) for j € J. We apply the decomposition to
problem (3) by considering constraint (3b) only and estimating
(3¢). In particular, we define the restricted master problem
(RMP) that considers constraint (3b) only for a limited number
of solutions x; € conv(X;) for each j € J. Then, we
use x? from the pricing problem of the dual decomposition.



Therefore, for given x?, j€J, k=1,...,k, the RMP is
given by
Zpw = min Z chx?a? (8a)
jeT k=1
st. Y ) AxEak >, (8b)
jeT k=1
dak=1jeJ, (8¢)
k=1

b >0,jeg k=1,...,r (8d)

Note that the feasible solutions to problem (3) are approx-
imated by the convex combination of x? € conv(X;). The
original variable solution is obtained by x; = Y ;_, xFa¥
for 7 € J. In addition, the RMP is a linear programming
problem. Let A and 1 be the dual variables corresponding to
constraints (8b) and (8c), respectively.

C. Branch-and-Price Method

Recall that some of the elements in the original variable
vector X; = Yy .,_ 1xj aj are restricted to being binaries.
However, RMP does not necessarily find a binary feasible
solution of the original problem (3). We apply the branch-and-
bound method for ensuring a binary feasible solution by the
branching procedure. Let d;‘? be an optimal solution of RMP.
In particular, this is called branch-and-price (BNP) method.
For given fractional value of >/ _; Xfaf at a node of the
branch-and-bound tree, the branching procedure creates two
child nodes by adding the branching hyperplanes

Zxa < Zx | and Zx -Z[ixﬁ?dﬂ
k=1

to each of the child nodes, respectively. Note that adding a
branching hyperplane is equivalent to branching on a fractional
variable x; of the original problem (3). Then, the BNP method
chooses a new node from the BNP tree and solves the node
problem by using Algorithm 1.

We summarize the algorithmic steps of the branch-and-
price method in Algorithm 2. In the initialization step of the
algorithm, the BNP tree is initialized as an empty set TREE of
nodes. Any BNP node Node € TREE represents the problem
data for the node. For a given BNP node, Algorithm 2 solves
the DMP and RMP of the node in lines 5 and 6. In line 9,
adding the branching hyperplanes (9) to each of the nodes
is equivalent to updating the problem data A; and b. The
BNP algorithm terminates with z = zyp and returns the
corresponding primal solution x; = Y7 _, x?d? for j € J.

IV. COMPUTATIONAL RESULTS

We present computational results for using the temporal
decomposition method on test problems. We have imple-
mented the temporal decomposition method in an open-source
decomposition solver DSP [15], which can run on high-
performance computing clusters in parallel via the MPI library.
In addition, we have integrated a branch-and-bound method

Algorithm 2 Branch-and-Price Method
Require: Initialize the problem data c;, A;, A, b, upper
bound 2z < o0, and TREE « ().
1: Create a root node (Node®) for given c;, A;, X, b, and
TREE < TREE U {Node®}.
2: repeat
3:  Choose a node Node € TREE.
4 Update TREE < TREE\{Node}.
5:  Call Algorithm 1 for solving the DMP of Node, which
returns zy, g and x?.

6:  Solve the RMP of Node that finds dé? for given x;?.

7. if Yp_, xFak is fractional then

8: Choose an original variable to branch.

9: Create two nodes (Node’ and Node®) by adding each
of (9) corresponding to the branching variable.

10: Update TREE < TREE U {Nodel Node’*}.

11:  else

12: Update zyp < min{zUB, ZLB}-

13:  end if

14: until TREE = ()

on top of the temporal decomposition method, which allows
us to find an optimal solution to the original problem (1), as
compared with finding lower bounds only. For the branch-and-
price method (Algorithm 2), we have utilized an open-source
software package Coin—ALPS [17] that implements a generic
tree search framework. DSP uses a commercial optimization
solver CPLEX (version 12.7) for solving the mixed-integer
programming subproblems (5) of the temporal decomposition.
We have modeled the problem (1) and its decomposition in
the Julia script language, which can be read by DSP. All
the computations were run on Blues, a 630-node computing
cluster at Argonne National Laboratory. The Blues cluster has
a QLogic QDR InfiniBand network, and each node has two
octo-core 2.6 GHz Xeon processors and 64 GB of RAM. Note,
however, that our implementation can also run on a laptop or
workstation.

We use the IEEE 118-bus system with 118 buses, 54
generators, and 186 transmission lines. The system has a total
generation capacity of 5,450 MW. The system is required to
reserve 10% and 5% of the system load as spinning up/down
reserves for the ability to increase and decrease the generation,
respectively (i.e., v = 0.1 and 4y~ = 0.05). We also consider
three blocks of generation cost (i.e., || = 3). Figure 1 shows
the fluctuation of the system load profile used in our study.
We use seven days of the load profile with 1-hour intervals. In
particular, we use the estimated hourly load of the PJM system
[18] for the dates from April 8 to April 14, 2016, which is
scaled down to 10% to obtain the load profile used in our
computational study. The load is 2,775 MW on average, with
a peak of 3,182 MW.

Table I presents the size of the problem instances for 24-,
48-, 72-, 96-, 120-, 144-, and 168-hour horizons. Recall that
the 168-horizon UC problem represents the 24-hour operation
horizon with 6 days of overlap (lookahead) for the PCM
simulation. The UC problem is solved up to a week ahead in
their operational decision processes to account for generating
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Fig. 1. Load profile used for the IEEE 118-bus system.

TABLE I
S1ZES OF IEEE 118-BUS SYSTEM PROBLEM INSTANCES

T # Constraints ~ # Variables  # Binary
24 19765 18960 1296
48 40070 37920 2592
72 60398 56880 3888
96 80726 75840 5184
120 101054 94800 6480
144 121382 113760 7776
168 141710 132720 9072

TABLE 11

NUMERICAL RESULTS FOR PROBLEM INSTANCES USING CPLEX-12.7 IN
PARALLEL WITH 16 COMPUTING CORES

T Best Objective  Gap (%) Time (sec.)
24 1077030.3 0 6
48 2171642.3 0 68
72 3122813.6 0 1351
96 4174770.7 < 0.01 14400
120 5158594.4 < 0.01 14400
144 6152020.7 0.01 14400
168 7122822.5 0.02 14400

units with very long startup times [19]. Table II summarizes
the numerical results for each problem instance solved by
CPLEX in parallel on a 16-core single node of the Blues
cluster. We set a zero optimality gap tolerance and a 4-hour
wall clock time limit. Within the time limit, optimal objective
values were found for 24-, 48-, and 72-hour problem instances.
For the other problem instances, CPLEX found solutions with
positive gaps. In particular, the optimality gap increases as the
problem size increases, as shown in Table II.

We now present the numerical results from the temporal
decomposition. We tested the decomposition method with
different numbers of subhorizons (i.e., |J| = 2,4, 8,12, 24);
Table III shows the size of the coupling problem (2) that
results. The percentages of the coupling constraints and vari-
ables to the total numbers are also reported in the table. The
number of constraints and variables increases with the number
of decompositions. However, we highlight that the temporal
decomposition generates columns iteratively up to the number
of coupling variables reported in Table III. Therefore, the size
of the master problem is far smaller than the size of the
coupling problem.

In Figure 2 and Table IV, we report numerical results from
the temporal decomposition method with different numbers of

TABLE III
NUMBER OF COUPLING CONSTRAINTS AND VARIABLES
T |T| Constraints Variables Binary
24 2 594 (3%) 3456 (18%) 702 (54%)
4 1506 4104 1026
8 2548 4914 1188
12 3300 5616 1242
24 5428 (27%) 7614 (40%) 1296 (100%)
48 2 617 (1%) 6588 (17%) 1350 (52%)
4 1782 7668 1998
8 3514 8640 2322
12 4510 9396 2430
24 | 6900 (17%) 11448 30%) 2538 (97%)
2 629 (1%) 8532 (15%) 1998 (51%)
4 1818 11232 2970
8 4032 12366 3456
12 5522 13176 3618
24 8372 (13%) 15282 (26%) 3780 (97%)
96 2 640 (0.7%) 10314 (13%) 2592 (50%)
4 1851 14688 3942
8 4158 16092 4590
12 6182 16956 4806
24 | 9430 (11%) 19116 25%) 5022 (96%)
120 2 640 (0.6%) 10314 (10%) 2592 (40%)
4 1869 17604 4914
8 4200 19818 5724
12 6424 20736 5994
24 10488 (10%) 22950 (24%) 6264 (96%)
144 2 640 (0.5%) 10314 (9%) 2592 (33%)
4 1887 20520 5886
8 4242 23544 6858
12 6534 24516 7182
24 11546 (9%) 26784 (20%) 7506 (96%)
168 2 640 (0.4%) 10314 (7%) 2592 (28%)
4 1905 23436 6858
8 4284 27270 7992
12 6578 28296 8370
24 12604 (8%) 30618 (23%) 8748 (96%)
10* 4
_ 103 4
E 102 4
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Fig. 2. Solution times resulting from the temporal decompositions for
different numbers of time periods.

subintervals for 24-, 48- ,72-, 96-, 120-, 144-, and 168-horizon
UC problems. The temporal decomposition (Algorithm 2)
solves the MIP pricing subproblem (5) for each j € J in
parallel. Each subproblem is solved on a single node with
16 cores. For example, the problem of | 7| = 24 solves 24
subproblems on 24 computing nodes with 384 (=24*16) cores.
The quadratic programming master problem is also solved in
parallel by CPLEX on a single node with 16 cores. We also
set 4-hour time limit for the runs.

Figure 2 plots the solution times resulting from CPLEX



TABLE IV
NUMERICAL RESULTS FROM TEMPORAL DECOMPOSITION WITH DIFFERENT NUMBER OF SUB-HORIZONS.

Root Node Branch-and-Price
T |7| | Iterations Best Bound Gap (%) Time (sec.) | Nodes Best Bound Best Objective  Gap (%) Time (sec.)
24 2 17 1077030.3 0 908 1 1077030.3 1077030.3 0 908
4 54 1077030.3 0 137 1 1077030.3 1077030.3 0 137
8 92 1077023.6 < 0.01 103 5 1077030.3 1077030.3 0 118
12 120 1077030.3 0 148 13 1077030.3 1077030.3 0 195
24 140 1077023.0 < 0.01 237 13 1077030.3 1077030.3 0 342
48 2 49 2171629.6 < 0.01 2092 11 2171642.3 2171642.3 0 3187
4 71 2171623.1 < 0.01 2526 3 2171642.3 2171642.3 0 2559
8 90 2171620.9 < 0.01 435 5 2171642.3 2171642.3 0 520
12 105 2171622.2 < 0.01 176 13 2171642.3 2171642.3 0 237
24 129 2171635.1 < 0.01 237 35 2171642.3 2171642.3 0 470
72 2 32 3122813.6 0 1941 1 3122813.6 3122813.6 0 1807
4 37 3122800.0 < 0.01 858 11 3122813.6 3122813.6 0 815
8 65 3122792.5 < 0.01 1289 11 3122813.6 3122813.6 0 1868
12 87 3122810.3 < 0.01 436 19 3122813.6 3122813.6 0 498
24 129 3122806.5 < 0.01 299 15 3122813.6 3122813.6 0 526
96 2 48 4174726.5 < 0.01 14400 0 4174726.5 NA < 0.01 14400
4 47 4174746.5 < 0.01 3803 19 4174770.7 4174770.7 0 10730
8 84 4174763.3 < 0.01 4247 35 4174770.7 4174770.7 0 6160
12 112 4174747 .4 < 0.01 1473 33 4174770.7 4174770.7 0 2352
24 141 4174769.4 < 0.01 735 29 4174770.7 4174770.7 0 1166
120 2 48 5158553.5 < 0.01 14400 0 5158553.5 NA < 0.01 14400
4 55 5144130.4 0.28 14400 0 5144130.4 NA 0.28 14400
8 99 5158562.0 < 0.01 3148 5 5158594.4 5158594.4 0 4033
12 116 5158568.2 < 0.01 3355 15 5158594.4 5158594.4 0 4039
24 129 5158570.9 < 0.01 829 35 5158594.4 5158594.4 0 1565
144 2 47 6150192.3 0.03 14400 0 6150192.3 NA 0.03 14400
4 65 6151935.2 < 0.01 7108 3 6151974.0 6151974.0 0 7646
8 77 6151928.5 < 0.01 1967 15 6151974.0 6151974.0 0 3161
12 96 6151934.4 < 0.01 3560 19 6151974.0 6151974.0 0 4494
24 139 6151933.5 < 0.01 1057 7 6151974.0 6151974.0 0 1222
168 2 47 7119965.0 0.04 14400 0 7119965.0 NA 0.04 14400
4 57 7122821.1 < 0.01 10573 1 7122821.1 7122821.1 0 10753
8 98 7122771.9 < 0.01 3600 0 7122821.1 7122821.1 0 4329
12 108 7122773.7 < 0.01 2893 5 7122821.1 7122821.1 0 3145
24 151 7122793.8 < 0.01 2396 15 7122821.1 7122821.1 0 3327

and the temporal decomposition method with different num-
bers of subintervals. The x-axis presents the time horizon
of the UC problem. “TD(n)” plots the solution time from
the temporal decomposition of n subintervals for n =
2,4,8,12,24. The temporal decomposition method found
optimal solutions for all the problem instances (i.e., T' =
24,48,72,96,120, 144, 168) within the time limit. In partic-
ular, the 96-hour horizon problem was solved to optimality
after 1166 seconds when decomposed into 24 subhorizons.
For this problem instance, the solution time was reduced by
at least a factor of 12.

Detailed numerical results are reported in Table IV. The
columns for “Root Node” present the results observed at the
root node before starting the branch-and-price method. The
column “Iterations” reports the number of iterations taken in
Algorithm 1. The best lower bound of z are reported in the
column “Best Bound” with the relative gap as the relative
difference between the best bound and the best objective found
in Table II. For the branch-and-price results in Table IV,
“Nodes” reports the number of BNP nodes solved. “Best
Objective” reports the objective value of the primal solution.
The temporal decomposition found the optimal solutions and
the best objective values for all the problem instances. Note,
however, that the best objective values were not found within
the time limit (denoted by “NA”) when the subproblems were
large (e.g., the 96-horizon instance with | 7| = 2).

We highlight that the best bound found at root node is

very tight, with the gap less than 0.01% for most problem
instances, including zero gaps for four of the instances. As
a result, only a few of the BNP nodes were solved to find
a primal solution and prove optimality. Note, however, that
the computational performance depends on the choice of the
number of subhorizons. If the size of the subhorizon problem
is large, a primal solution cannot be found (e.g., the problem
with T = 168 and |J| = 2).

We also highlight that unit commitment decisions are con-
siderably different, closing the 0.02% optimality gap for the
168-hour planning instance. Figure 3 plots the commitment
schedules obtained by CPLEX and our temporal decomposi-
tion for the 168-hour time horizon instance. Specifically, the
commitment schedules are different in 9 of the 54 generating
units (17%) for 372 hours. These results suggest that subop-
timal schedules (even with small optimality gap) can deviate
significantly from an optimal schedule, thus hindering high-
fidelity PCM simulations.

V. CONCLUSIONS

We presented a novel temporal decomposition method that
solves a long-term UC problem by splitting the long-term
problem into many shorter-term problems based on Lagrangian
relaxation, where the shorter-term problems are solved in par-
allel. The computational results on the IEEE 118-bus system
showed that the parallel temporal decomposition reduces the



Suboptimal Commitment Solution from CPLEX

Generator ID

Optimal Commitment Solution from Temporal Decomposition

Generator ID

Fig. 3.

Hour

Unit commitment solutions found for the 168-hour unit commitment problem instance by CPLEX and the temporal decomposition TD(24). The

generators are scheduled online for the black-colored time periods with the grey highlights of differences.

solution time by 92% for solving a 96-hour horizon UC prob-
lem, which could not be solved to optimality by CPLEX with
the 4-hour time limit. The improvement in solution quality
and time allows more efficient high-fidelity PCM simulations
with multiple scenarios. We highlight that our decomposition
scheme can be applied to other problems such as market and
system operations. We plan to develop and integrate primal
methods (e.g., cutting planes and heuristics) in the temporal
decomposition, which would accelerate the solution.
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